The accepted manuscript for

Dongbing Zhang
Dynamism in knowledge exchanges: Developing move systems based on Khorchin Mongolian interactions
Discourse Studies
Published online first, 20 December 2020
https://doi.org/10.1177/1461445620982113
Dynamism in knowledge exchanges: Developing move systems based on Khorchin Mongolian interactions

Abstract

This paper aims to develop the description of move systems in Systemic Functional Linguistics based on dynamism in knowledge exchanges, i.e. the possible move options made available at different points in an exchange concerned with the negotiation of information. Using conversational interactions in Khorchin Mongolian as examples, the paper argues that at different points in a knowledge exchange, both the speaker and the addressee’s knowledge of the information are at stake. The speaker may be positioned either as knowing or as not knowing the information; at the same time the addressee may be positioned either as knowing or as not knowing the information. It is also possible for the interlocutors not to be positioned either way. The move systems developed make it possible to discuss the options preselected and activated at different points in a knowledge exchange and the way interlocutors are dynamically positioned as an exchange unfolds.

Keywords: move systems, conversation analysis, Khorchin Mongolian, exchange structure, dynamism, interlocutor positioning, speech role, epistemology, +knowledge, -knowledge

1. Introduction: knowledge exchange and rank

One of the ways in which interactions are analysed in Systemic Functional Linguistics (hereafter SFL) is in terms of the unit of exchange, which comprises up to five predictable moves (Martin, 1992, 2018). This paper aims to develop the description of move systems based on dynamism in knowledge exchanges, i.e. exchanges that are concerned with the negotiation of information. Dynamism is used in the sense of the possible move options made available at different points in an exchange (Martin, 1988; O’Donnell, 1990). The need for developing the current move system arises from its application in analysing conversational interactions in Khorchin Mongolian, a variety of Mongolian spoken in eastern Inner Mongolia, China.

This section first introduces the notions of knowledge exchange and rank; the latter is the theoretical dimension in SFL that relates exchange and move. Section 2 introduces the kind of data used in the study before the move systems are developed in terms of dynamism in knowledge exchanges in Section 3 and Section 4.
1.1 Knowledge exchange

Exchange is a unit of interaction with recognisable obligatory and optional elements. Systematic studies of exchange structure go back to Berry (1981a, 1981b, 1981c), whose ideas are further developed in Martin (1992), Martin and Rose (2007), Ventola (1987), and more recently in Zhang (2020a) in relation to the model of discourse semantics in SFL.

The kind of interactions that is most relevant to the study of exchange structure is the ones that centre around the negotiation of information and action – as opposed to the ones where the interactants negotiate affiliation around shared feelings (Eggins and Slade, 1997; Knight, 2010, 2013; Martin, 2000a, 2000b, 2019; Zappavigna and Martin, 2018). Exchanges that are concerned with the negotiation of information and action are called knowledge exchange and action exchange respectively. This paper focuses on the dynamic aspects of knowledge exchanges; action exchanges will be set aside. The exchange in (1) below is an example of a knowledge exchange. The exchange resolves around the identity of the person that is ‘there’.

(1) from Martin (2018: 9)

Jopay: \textit{Who’s there?}
Lita: \textit{Joseph.}

The structural configuration of a knowledge exchange shows how knower roles are adopted and assigned. According to Berry (1981a), in a ‘well-formed’ knowledge exchange, there is an obligatory slot where the speaker indicates that she or he knows the information and has authority over the information. This functional slot is called K1 (K = knower; 1 = primary). The speech role is termed primary knower. The complementary role of not knowing the information or lacking authority over the information is called secondary knower and the corresponding functional slot K2 (2 = secondary). Note that the speech roles are adopted and assigned to interlocutors as exchanges unfold and they do not necessarily reflect the reality of the interlocutors’ knowledge states (e.g. Berry, 2016: 41; Muntigl, 2009: 231). The exchange in (1) above can thus be analysed as (2).

(2) from Martin (2018: 9)

Jopay: \textit{K2 Who’s there?}
Lita: \textit{K1 Joseph.}
Unlike the exchange in (2), the primary knower could alternatively check the state of the knowledge of the addressee before giving the information (or indicating their authority over the information) at K1. The exchange in (2), for example, could have unfolded as (3). The functional slot where the primary knower delays the indication of primary knower authority is called Dk1 (D = delayed).

(3) from Martin (2018: 10)

Lita: Dk1 Wow, you’ll never guess who’s here!
Jopay: K2 Who’s there?
Lita: K1 Joseph.

This Dk1 ^ K2 ^ K1 structure (^ = sequence) is commonly observed in classroom interactions – as in (4).

(4) from Rose and Martin (2012: 296)

Teacher: Dk1 So if Mr Fox is almost right out, what part of him might still be in the hole?
Student: K2 His tail.
Teacher: K1 That’s exactly right.

The K1 slot could potentially be followed up by the secondary knower to consolidate the information negotiated. This follow up slot is called K2f (f = follow up). The K2f could in turn be followed up by the primary knower. The functional slot where the primary knower follows up K2f is called K1f. K2f and K1f are exemplified in (5).

(5) from Martin (2018: 10)

Lita: K1 Joseph’s here now.
Jopay: K2f Really?
Lita: K1f The very one!

Structurally speaking, in a well-formed knowledge exchange, K1 is always obligatory and K2f and K1f are optional. When an exchange is initiated by the secondary knower, K2 is obligatory. K2 is also obligatory when Dk1 is present. The exchange structure analysis thus captures the co-occurrence of and restrictions on elements in an exchange when it unfolds according to expectation.¹

However, in everyday interactions, exchanges do not always unfold as expected. They involve moves that are dependent on the predictable elements. As illustrated in (6) and (7), these elements diverge
from the expected course of an exchange. The dependent elements in (6) – (6.2) and (6.3) – suspend
the realisation of an expected K1. The interlocutors clarify the experiential meaning before resuming
the original exchange. They are called tracking moves. (tr = tracking; rtr = response to tracking)

(6) from Ventola (1987: 108)

1. Client: K2 What time flights then go to Sydney tomorrow?
2. Server: tr er morning or afternoon now?
4. Server: K1 Uh well, you’ve got at 9:30 and 10:15...

The dependent elements in (7) – (7.2) to (7.7) – suspend the realisation of an expected K2f. They are
concerned with the interlocutors’ knower status of the information and could potentially have aborted
the exchange. These are known as challenges. (ch = challenge; rch = response to challenge)

(7) from Martin (1992: 74)

1. A: K1 It’s a Range.
2. B: ch No it isn’t.
3. A: rch It is.
4. B: ch Are you certain?
5. A: rch Absolutely.
6. B: ch Really?
7. A: rch Yes.
8. B: K2f Alright then.

Tracking moves and challenges are considered the dynamic aspects of exchange structure by Martin
(1985, 1992). He argues that tracking and challenges involve the recursion of an exchange element
until the knowledge at stake is resolved – either the experiential meaning is agreed upon or the
interpersonal positionings are accepted. This, Martin suggests, cannot be sufficiently captured via
system networks, which are more ‘synoptic’ in their representation; flowcharts are recommended
instead (Martin, 1985: 267).

Such ‘dynamic’ aspects of exchange structure need to be differentiated from the notion of dynamism
used in this paper. As mentioned at the beginning of this section, dynamism in this paper is
understood in terms of the possible move options available at different points in an exchange
(O’Donnell, 1990; also see Berry, 1981a: 129-131, 2016: 38). This involves both the predictable
elements such as Dk1, K2, K1 and the non-predictable dependent elements such as tracking and
challenges. A more detailed discussion on the way dynamism is modelled in SFL requires another occasion.

1.2 Rank

In SFL, rank is the theoretical dimension that relates units of various sizes in terms of paradigmatic and syntagmatic relations (Halliday, 1961, 1963, 1966; Martin, 2013; Matthiessen and Halliday, 2009). This paper concentrates on two ranks that are developed in relation to interaction at the level of discourse – exchange and move (Martin, 1992; Ventola, 1987). The structural patterns (syntagmatic relations) introduced in Section 1.1 realise options at exchange rank (paradigmatic relations). For example, the structure K2 \(^\cup\) K1 realises the option [secondary knower initiation]. This is in contrast with [primary knower initiation], which is realised by Dk1 \(^\cup\) K2 \(^\cup\) K1 when the first speaker checks the addressee’s state of the knowledge before claiming authority over the information. In SFL, paradigmatic and syntagmatic relations are captured by system networks. The systems for knowledge exchange exemplified in Section 1.1 are shown in Figure 1 (adapted from Martin, 2018). System networks are ‘inheritance networks’ (Halliday and Matthiessen, 1999), e.g. the more delicate option [secondary knower initiation] inherits the structural property of ‘+K2; K2 \(^\cup\) K1’ from the option [negotiated].

![Figure 1 Systems for knowledge exchange](image-url)

The structural functions Dk1, K2, K1, K2f, and K1f are then realised by options at move rank. A move is typically realised by a clause selecting independently for MOOD in the grammar (e.g. declarative, interrogative, imperative and the like). So any dependent or embedded clauses realise a move together with the independent clause they are dependent on or embedded in (Martin, 1992).
The move rank systems developed in Martin (1992) follow Halliday’s formulation of primary speech functions (Halliday, 1984, 1994). Halliday identifies four basic speech functions – statement, question, command, and offer – based on two parameters in what he perceives as the ‘nature of dialogue’: i) the complementary speech roles of giving and demanding, and ii) the nature of commodity being exchanged – i.e. information and goods-&-services. Statement, question, command, and offer are characterised as giving information, demanding information, demanding goods-&-services, and giving goods-&-services respectively. In the exchanges in (3) above (repeated as (8) below), Dk1 is realised by a statement, K2 by a question, and K1 by a statement.

(8) from Martin (2018: 10)

Lita: Dk1 statement Wow, you’ll never guess who’s here!
Jopay: K2 question Who’s there?
Lita: K1 statement Joseph.

In contrast, in the exchange in (4) above (repeated as (9) below), Dk1 is realised by a question, K2 by a statement, and K1 by a statement.

(9) from Rose and Martin (2012: 296)

Teacher: Dk1 question So if Mr Fox is almost right out, what part of him might still be in the hole?
Student: K2 statement His tail.
Teacher: K1 statement That’s exactly right.

In other words, there is no one to one relationship between the structural functions in an exchange and the classes of move that realise them. This mismatch between exchange structure and move classes is represented schematically in Figure 2.
This model of move system will be problematised in relation to data from Khorchin Mongolian in Section 2 and further developed in Section 3 and Section 4. A generalised move network will be developed based on the options available at different points (i.e. structural functions) in an exchange as it unfolds.

2. Data

The development of move systems as it is intended in this paper is motivated by analyses of conversational data from Khorchin Mongolian. An example of Khorchin Mongolian conversation between colleagues is given in (10) below. The conversation occurred in the teachers’ office. Before the extract in (10), the teachers were gossiping about the mode of transport Secin – the mother – now uses to take her son to school. The extract in (10) is the end of this topic as it was interrupted by another teacher who returned to the office after teaching.

In terms of exchange structure, the interaction in (10) comprises two exchanges. They are initiated by T1 in (10.1) and (10.2) respectively. Exchange 1 is interrupted by Exchange 2 and is picked up by T2 in (10.3). Moves (10.3) to (10.7) involve a number of dependent elements – challenges and a tracking sequence.
As far as the speech function analysis at move rank is concerned, what is typically at stake in a knowledge exchange of the kind exemplified in (10) is the giving and demanding of information (i.e. statement and question) as they are introduced in Section 1.2. In (10) the initiating K1 slots in (10.1) and (10.2) are realised by statements. Similarly, the challenges and the responses to challenges are realised by statements. There is one instance of a question realising a tracking function in (10.4). The exchange structure and speech function analyses are highlighted in bold. The modal particles (MP) in declarative constructions are translated in square brackets within the translation line. A discourse-based interpretation of the modal particles in Khorchin Mongolian can be found in Zhang (2020a, 2020b).

(10) T = teacher; between colleagues

Exchange 1

1. T1: K1 tʰerule jinun ortʰen tsenlo kar jen-tʃ ĕː-tʃ fe
 statement DIST daughter 3POSS before trike INS commute-PROG COP-PST MP
 ‘[I know; you may know] her daughter was commuting (to school) by motorised trike before.’

Exchange 2

2. T1: K1 tʰeru senlo aen-tʃ-ʃ ūe le pes-tʃ pu
 statement DIST trike start-NPST.PTCP NEG RES become-PST MP
 ‘[It seems] that motorised trike have become unable to start.’

Exchange 1 (cont.)

3. T2: ch uku ec səj/-in nisam motʃo
 statement NEG Secin always motorbike
 ‘No, Secin always (takes her children to school by) motorbike.’

4. T1: tr xe?
 question eh
 ‘Eh?’

5. T2: rtr səj/-in nisam motʃo
 answer Secin always motorbike
 ‘Secin always (takes her children to school by) motorbike.’
6. T1: **rch ukuc senko kar pes jep-tʃ**˚ :tʃʊ

 statement NEG trike INS also commute-PROG COP-PST MP

 ‘No, [I know; you don’t know] (she) was also commuting by motorised trike.’

7. T2: **rrch ɔ ː**

 oh

 ‘Oh.’

The analysis in (10) above does not make explicit the underlying mechanisms for the competing selections of statement – i.e. giving information – in (10.1) realising K1 and in (10.3) and (10.6) realising challenge and response to challenge. For example, how are they related to the patterns in the exchange structure (K1 ^ ch ^ rch ^ rrch)? What is at stake in relation to primary knower authority adopted by T1 in (10.1)? How do they differ from one another in terms of the interlocutors’ state of knowledge of the information – as it is indicated through the modal particles (e.g. ʃɛ in (10.1) and ʃʊ in (10.6))? In order to answer these questions, the paper develops the speech function systems at move rank in the current model of discourse semantics (Martin, 1992) with respect to the interlocutors’ state of knowledge indicated as an interaction unfolds.

Two sets of data are used for this purpose. One set is between colleagues in the Mongolian sector of a primary school in Jalaid Banner, Hinggan League in Inner Mongolia, China. The conversation exemplified in (10) above is from this data set. The linguist obtained permission from the teachers in the Mongolian sector to stay at their office for a week and recorded their conversations. The conversations mainly happened before and after class every day. The topics range from technical discussions of Mongolian language to domestic affairs happening in the teachers’ home. The other data set used for this study is between members of a family in the same village. They include conversations over meal preparation and other anecdotal interactions.

3. Options at move rank

The starting point for the move systems developed in this paper is Berry’s (1981a) discussion of the options available to speakers at non-Dk1 points in an exchange. She argues that each non-Dk1 slot makes available a ‘superficially similar’ set of options: [+knowledge] and [-knowledge]. The selections from these options are restricted by the points of an exchange at which the selections are made. The availability of the options at K2 and K1 will be illustrated here.

The selections of [+knowledge] and [-knowledge] at K2 in the Dk1 ^ K2 ^ K1 structure are exemplified in (11) and (12) below (from Berry, 1981a: 129).
At K2 in the Dk1 ^ K2 ^ K1 structure, selecting [+knowledge] means ‘fairly confident’; and selecting [-knowledge] means ‘not so confident’ (Berry, 1981a: 129).

The options are also available at initiating K2 (in the K2 ^ K1 structure). Examples (13) and (14) provide instances of the selections [+knowledge] and [-knowledge] at initiating K2 (from Berry, 1981a: 129–130).

(13) Son: K2 You said that Salisbury was the English cathedral with the tallest spire. [+knowledge]
 Father: K1 Yes.

(14) Son: K2 Which English cathedral did you say had the tallest spire? [-knowledge]
 Father: K1 Salisbury.

Berry (1981d) argues for the same set of options – [+knowledge] and [-knowledge] – at K1. The K1 slots exemplified so far in this paper are instances of [+knowledge]. The selection indicates that the speaker knows the information; and most importantly, their indication of knowledge stamps the information with primary knower authority. In contrast, the K1 in (15) is an instance of [-knowledge] (from Berry, 1981d: 17).

(15) Son: K2 Which English cathedral has the tallest spire?
 Father: K1 I don’t know. [-knowledge]

Such selection of [-knowledge] at K1 is apparently contradictory to Berry’s characterisation of the primary knower as the interlocutor who is positioned as knowing the information (Berry, 1981a: 126). Berry (2017) in fact analyses I don’t know after K2 as an inability dis-preferred move (cf. Martin, 1992: 72-73). Nonetheless, Berry’s analysis of this exchange is in accordance with her formulation of exchange structure – i.e. the K1 in (15) is obligatory. The father has to indicate whether or not he knows the information for this exchange to be well-formed.
Taking Berry’s system of [+knowledge/-knowledge] as point of departure, this paper argues that the options are relevant to both the speaker and the addressee at move rank at different points in a knowledge exchange (including Dk1). To be specific, one may position oneself as knowing ([+knowledge]) or not knowing the information ([−knowledge]) and concurrently positions one’s addressee as knowing ([+knowledge]) or not knowing the information ([−knowledge]). As will be shown in the subsequent sections, along with positioning oneself and one’s addressee either as knowing or not knowing the information, the interactants may not in fact be positioned in either way.

For ease of reference, the overall potential of the move system is provided first in Figure 3. The way different options in the system are ‘activated’ by the relevant functional slots in the exchange environment is introduced in Section 4. The network will be revised with respect to co-selecting restrictions between features in Figure 4 in Section 5 below.

![Figure 3 Tentative move systems for knowledge exchanges (cf. Figure 4)](image)

Such knowledge positioning of both the speaker and the addressee is also discussed in detail in Muntigl (2009) in relation to the interactants’ epistemic rights and access to knowledge. Space precludes a detailed discussion of the differences between Muntigl’s (2009) approach and that presented in this paper. Briefly stated, the main difference has to do with the dimension of rank. Although Muntigl claims that his analyses are conducted at the level of exchange and move, the dimension of rank is not taken into account (see Figure 1 on Muntigl [2009: 246]). This paper, in contrast, takes the notion of rank as the theoretical basis and develops the move system based on the possible options made available at different points in a knowledge exchange in relation to knowledge positioning. Another significant argument put forward in Muntigl (2009) is related to the upgrading and downgrading of knowledge claims. For a discussion of this from the perspective of ENGAGEMENT
(Martin and White 2005) in relation to the system under development in this paper, see Zhang (2020a, 2020b).

The remainder of the paper examines selections from the network along with the restrictions from the functions they realise in knowledge exchanges. The central question is what features in the system are ‘activated’ for a particular structural function in an exchange and what features are ‘preselected’. As O’Donnell (1990: 311) explains, activation “differs from preselection in that preselection specifies that a given feature must be selected, while activation specifies a range of features, only one of which must be selected”. To provide a comprehensive account, the following sections consider the activation and preselection of move options for the obligatory elements of a knowledge exchange (Dk1, K2, K1) one by one. The move options are then used to interpret the dependent elements – tracking and challenges – with respect to the moves they depend on. The options available at the optional slots, K2f and K1f, has to be set aside due to the constraints of space.

4. Exchange structure and move systems

4.1 Move selections at Dk1

Dk1 predicts a claim for the primary knower role at K1 after the knowledge state of the secondary knower is checked at K2 (a Dk1 ^ K2 ^ K1 structure). Since interlocutors adopting the primary knower role are positioned as knowing the information and having authority over the information, the option [speaker positioned: +knowledge] is preselected – meaning [+knowledge] has to be selected for the positioned speaker at Dk1. In (16) below, the niece is positioned as knowing the information at Dk1. Speaker positioning at Dk1 is highlighted in bold. (spkr = speaker, adrs = addressee, +K = +knowledge)

(16) N = niece, U = uncle

1. N: Dk1
 | spkr | adrs | this | what | make-PST.PTCP |
 | +K | in-\|sn | -s\|n | -\|n | IP |
 +K | this | what | make-PST.PTCP | IP |
 ‘What was this made from?’

2. U: K2
 flour
 ‘Flour.’
To see how the addressee is positioned at Dk1, we need to consider the way the positioning of the speaker in the following K2 (i.e. the addressee at Dk1) affects the flow of the exchange. In (16.2) above, the speaker is positioned as knowing the information by giving a definitive response kojør ‘flour’. This speaker positioning at K2 does not affect the expected flow of the exchange as Dk1 ^ K2 ^ K1.

(16.2) U: K2

\[
\begin{array}{c|c|c}
\text{spkr} & \text{adr} & \text{kkojør} \\
\hline
+K & & \text{flour}
\end{array}
\]

‘Flour.’

Alternatively, the speaker at K2 may be positioned as not knowing the information as in (17) below (produced after a round of hide-and-seek between uncle and niece; the uncle was hiding behind the curtain). The speaker positionings at Dk1 and K2 are highlighted in bold. (-K = -knowledge)

(17) N = niece, U = uncle

1. N: Dk1

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\text{spkr} & \text{adr} & \text{pi} & \text{jeːtf} & \text{tf̩emwe} & \text{ki} & \text{aːr-tʃ} & \text{əl-sən} & \text{iː} \\
\hline
+K & & 1SG & how & 2SG & ACC & look.for-PROG & get-PST.PTCP & ACC
\end{array}
\]

\[
\begin{array}{c}
\text{mst} \text{-ə} \\
\text{know-NPST.PTCP}
\end{array}
\]

‘Do you know how I found you?’

2. U: K2

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\text{spkr} & \text{adr} & \text{mst-x} & \text{ue} \\
\hline
-K & & \text{know-NPST.PTCP} & \text{NEG}
\end{array}
\]

‘(I) don’t know.’

3. N: K1

\[
\begin{array}{c|c|c|c|c}
\text{tf̩in} & \text{xul} & \text{tf̩in} & \text{kunæ} & \text{peː-tʃ} \\
\hline
2SG.GEN & foot & 2POSS & outside & COP-PST
\end{array}
\]

‘Your feet was outside (the curtain).’

As shown in (17), when the speaker at K2 is positioned as not knowing, the exchange unfolds as expected. Considering (16) and (17) together, the positioning of the speaker at K2 either as knowing or not knowing in a Dk1 ^ K2 ^ K1 structure does not affect the expected flow of an exchange.
Therefore, at Dk1, the addressee is positioned as neither knowing nor not knowing. (NP = not positioned)

(16.1) N: Dk1

\[
\begin{array}{c|c|c|c}
\text{spkr} & \text{adrs} & \text{on} & \text{ju} & \text{kər} & \text{xi:-sən} & \text{tv} \\
\hline
+K & NP & \text{this} & \text{what} & \text{INS} & \text{make-PST.PTCP} & \text{IP}
\end{array}
\]

‘What was this made from?’

(17.1) N: Dk1

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{spkr} & \text{adrs} & \text{pi} & \text{je:tʃ} & \text{tf}^{\text{eme}} & \text{ki} & \text{ər-tʃ} & \text{əl-sən} & \text{i}::
\hline
+K & NP & \text{1SG} & \text{how} & \text{2SG} & \text{ACC} & \text{look.for-PROG} & \text{get-PST.PTCP} & \text{ACC}
\end{array}
\]

\[
\text{mət-ə} \quad \text{mɛ}
\]

know-NPST.PTCP IP

‘Do you know how I found you?’

4.2 Move selections at non-initiating K1

The K1s in (16) and (17) above are non-initiating – K1 in a Dk1 ^ K2 ^ K1 structure. Given that the primary knower indicates their authority over the information at K1, the speaker at K1 is positioned as knowing the information (i.e. the option [speaker positioned: +knowledge] is preselected at move rank). In addition, the secondary knower must indicate whether or not they know the information at K2; therefore the addressee at K1 (i.e. the speaker at K2) must be positioned – meaning the option [addressee positioned] is preselected at non-initiating K1.

Move selection that reflects the positioning of the addressee at non-initiating K1 is thus determined by the positioning of the speaker at K2 in a Dk1 ^ K2 ^ K1 structure. When the speaker at K2 is positioned as not knowing, this positioning is preserved at K1 – i.e. the addressee at K1 is positioned as not knowing. This is the case in (17) above (analysed as (17’) below). Speaker positioning at K2 and addressee positioning at K1 are highlighted in bold.

(17’) N = niece, U = uncle

1. N: Dk1

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{spkr} & \text{adrs} & \text{pi} & \text{je:tʃ} & \text{tf}^{\text{eme}} & \text{ki} & \text{ər-tʃ} & \text{əl-sən} & \text{i}::
\hline
+K & NP & \text{1SG} & \text{how} & \text{2SG} & \text{ACC} & \text{look.for-PROG} & \text{get-PST.PTCP} & \text{ACC}
\end{array}
\]

\[
\text{mət-ə} \quad \text{mɛ}
\]

know-NPST.PTCP IP

‘Do you know how I found you?’
2. U: K2
 | spkr | adrs | mst-x | ue |
 | | | know-NPST.PTCP | NEG |
 'I don’t know.'

3. N: K1
 | spkr | adrs | tfʰin | xul | tfʰin | kærʔe | peː-ːf |
 | +K | -K | 2SG.GEN | foot | 2POSS | outside | COP-PST |
 'Your feet was outside (the curtain).'

When the speaker at K2 is positioned as knowing, the ensuing K1 preserves this positioning if the candidate information is consistent with the speaker’s knowledge at K1 – i.e. the addressee at K1 is positioned as knowing. This is the case in (16) above (analysed as (16’) below).

(16’) N = niece, U = uncle

1. N: Dk1
 | spkr | adrs | gn | ju | kær | xiː-ːson | tu |
 | +K | NP | this | what | INS | make-PST.PTCP | IP |
 ‘What was this made from?’

2. U: K2
 | spkr | adrs | kojɾr |
 | +K | | flour |
 ‘Flour.’

3. N: K1
 | spkr | adrs | tʰw että |
 | +K | +K | correct-PST |
 ‘(I) is correct.’

Alternatively, when the speaker at K2 is positioned as knowing but the candidate information proposed at K2 is not consistent with the primary knower’s knowledge of the information, K2 is followed by a challenge. The expected flow of the exchange as Dk1 ^ K2 ^ K1 would be disrupted. The addressee at the expected K1 slot would be positioned as not knowing; and the interlocutors may negotiate the information further till consensus is reached – i.e. the expected K1 is instantiated. In (18) below, the stamping of the information with primary knower authority is postponed till (18.5).

This has been possible because the desired candidate information is provided in (18.4).
1. N: Dk1 spkr adrs sn ju kor xi:-son tw
 +K NP
 ‘What was this made from?’

2. U: K2 spkr adrs kojor
 +K
 ‘Flour.’

3. N: ch spkr adrs kojor ur xi:-son pifc
 +K -K
 flour INS make-PST.PTCP NEG
 ‘(It is) not made from flour.’

4. U: K2 spkr adrs fimmp’ini
 +K +K
 modelling.clay
 ‘Modelling clay.’

5. N: K1 spkr adrs tiw.r-y\b
 +K +K
 correct-PST
 ‘(It) is correct.’

In short, at K1 in a Dk1 ^ K2 ^ K1 structure, the speaker is positioned as knowing and the addressee is positioned either as knowing or not knowing, depending on the way the speaker at K2 is positioned. Technically speaking, [speaker positioned: +knowledge] is preselected and the features [addressee positioned: +knowledge] and [addressee positioned: -knowledge] are activated.

These move rank selections also realise non-initiating K1 in a K2 ^ K1 structure as in (19) and (20). The preservation at K1 of the positioning of the speaker at K2 is highlighted in bold.

(19) T = Teacher; the two teachers are talking about the grammaticality of a sentence made by one of the students

T1: K2 spkr adrs sn w:/p9r tiw.r-ø mu tiw.r-x u\ w mu
 -K PROX sentence correct-NPST.PTCP IP correct-NPST.PTCP NEG IP
 ‘Is this sentence correct or not correct?’
In (20), the first move is realised by a clause that involves the modal particle * prolet*; it shows that the speaker knows the information with less certainty. The move realises K2 as it expects the stamping of primary knower authority at K1. The choices that account for degrees of knowing realised through modal particles in Khorchin Mongolian are discussed in Zhang (2020b, 2020c).

4.3 Move selections at K2

The examples in the discussion of non-initiating K1 necessarily involve K2. So this section will summarise the possible realisations of K2 before moving onto initiating K1 slots. The exchanges in (16) and (17) above show that the speaker at K2 is positioned either as knowing or not knowing in a Dk1 ^ K2 ^ K1 structure.

(16.2) U: K2

| spkr | adrs | *kojor*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+K</td>
<td></td>
<td>flour</td>
</tr>
</tbody>
</table>

‘Flour.’

(17.2) U: K2

spkr	adrs	*mst-x*
	-K	*we*

| know-NPST.PTCP | NEG |

‘(I) don’t know.’

The positioning of the addressee at K2 in this type of structure is determined by the positioning of the speaker at the preceding Dk1 and the expected K1. As discussed earlier, the speaker positioning at these two slots is knowing; therefore, the positioning of the addressee at K2 (i.e. the speaker at Dk1 and K1) is knowing. The exchanges in (16) and (17) are analysed as (16’’) and (17’’) below. Speaker
positioning at Dk1 and K1 and addressee positioning at K2 are highlighted in bold.

(16”) N = niece, U = uncle

1. N: Dk1
 | spkr | adrs | sn | ju | kər | xi-son | tw |
 | #K | #NP | | | | | |
 +K
   ```
   this what INS make-PST.PTCP IP
   ‘What was this made from?’
   ```

2. U: K2
 | spkr | adrs | kjoʃə |
 | #K | #K | |
 +K
   ```
   flour
   ‘Flour.’
   ```

3. N: K1
 | spkr | adrs | tʰw-r-tʰ |
 | #K | #K | |
 +K
   ```
   correct-PST
   ‘(It) is correct.’
   ```

(17”) N = niece, U = uncle

1. N: Dk1
 | spkr | adrs | pi | jəː:tʃ | tʰwme | ki | ɔː-r-tʃ | ɔːi-son | i: |
 | #K | #NP | | | | | | | |
 +K
   ```
   mət-o     mɛ
   know-NPST.PTCP IP
   ‘Do you know how I found you?’
   ```

2. U: K2
 | spkr | adrs | mət-x | uɛ |
 | #K | #K | | |
 -K
   ```
   know-NPST.PTCP NEG
   ‘(I) don’t know.’
   ```

3. N: K1
 | spkr | adrs | tʰ/ini | xul | tʰ/in | kəɾtʰɛ | pː-tʃ |
 | #K | #K | | | | | |
 +K
   ```
   2SG.GEN foot 2POSS outside COP-PST
   ‘Your feet was outside (the curtain).’
   ```

The same reasoning applies to initiating K2 in a K2 ^ K1 structure. The speaker at initiating K2 is positioned either as knowing or not knowing. The addressee is positioned as knowing since a following K1 is expected. The exchanges in (19) and (20) are analysed as (19’) and (20’) below to show such selections.
(19’) T = Teacher; the two teachers are talking about the grammaticality of a sentence made by one of the students

T1: K2 spkr adrs sn uːlpɔɾ tʰɐ nʊtʰ ɐːɭʊ ɪn pɐ ɐːtʃɛ ɰɪn ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ
-K +K PROX sentence correct-NPST_PTCP IP correct-NPST_PTCP NEG IP
‘Is this sentence correct or not correct?’

T2: K1 spkr adrs tʰɐ nʊtʰ ɐːɭʊ ɪn pɐ ɐːtʃɛ ɭʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ
‘Correct.’

(20’) T = teacher

T1: K2 spkr adrs sn uːlpɔɾ tʰɐ nʊtʰ ɐːɭʊ ɪn pɐ ɐːtʃɛ ɭʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ
+K +K PROX sentence correct-NPST MP
‘This sentence [may] be correct, [right?]’

T2: K1 spkr adrs tʰɐ nʊtʰ ɐːɭʊ ɪn pɐ ɐːtʃɛ ɭʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ əʊ ʊtɕ
+K +K correct-NPST
‘Correct.’

4.4 Move selections at initiating K1

As with non-initiating K1 slots, interlocutors claim primary knower authority at an initiating K1 slot. This means that the speaker at this slot is positioned as knowing. The initiating K1 at (10.1) is repeated as (21) below.

(21) T = teacher

T1: K1 spkr adrs tʰɐ r ixin sn ortʃɛ sunlo kɔɾ
+K DIST daughter 3POSS before trike INS
‘[I know; you may know] her daughter was commuting

jʊp-tʃ ɛː-tʃ fɛ
commute-PROG COP-PST MP
(to school) by motorised trike before.’

The addressee in (21) is also positioned as knowing. This is realised through the clause final modal particle fɛ. This modal particle is typically used to establish shared knowledge before presenting
another proposition. From the perspective of discourse, K1 in (21) can be followed by a K2f realised by ŋː but less likely by ɔː. The interjection ŋː indicates that the information presented in the previous move is in accordance with the speaker’s knowledge; the interjection ɔː, on the other hand, indicates that the information presented is new to the speaker. (21) is adjusted as (22) to show this pattern.

(22) T = teacher

1. T1: K1 | spkr | adrs | tʰər ixin sn ortʰ ənlo kər
 +K +K
 DIST daughter 3POSS before trike INS

 ‘[I know; you may know] her daughter was commuting
 jup-tf ē:-tf əe
 commute-PROG COP-PST MP

 (to school) by motorised trike before.’

2. T2: K2f | spkr | adrs | ŋː
 +K
 INTJ

 ‘Yes (= She was).’

Additional evidence for analysing the positioning of the addressee in (22.1) as knowing is that when the K1 as in (22.1) is followed by mətx əu ‘(I) don’t know’, the speaker needs to reassert the information as in (23.1) below. (23.2) is analysed as a challenge since the assumption that the information is shared between the interlocutors is rejected. ((23.3) is originally used in (10.6) above when the information presented as shared is rejected with a competing information.)

(23) T = teacher

1. T1: K1 | spkr | adrs | tʰər ixin sn ortʰ ənlo kər
 +K +K
 DIST daughter 3POSS before trike INS

 ‘[I know; you may know] her daughter was commuting
 jup-tf ē:-tf əe
 commute-PROG COP-PST MP

 (to school) by motorised trike before.’
In contrast, when initiating K1 is realised by a declarative clause that does not involve a modal particle as in (24) below, the following K2f is more likely to be realised by ő: ‘that is new to me’ than őː ‘that is in accordance with my knowledge’. In addition, they are unlikely to be followed by mstx ue ‘(I) don’t know’, since the addressee is positioned as not knowing.

(24) T = teacher

1. T1: K1 őː

2. T2: K2f őː

So far it is shown that as with non-initiating K1 the speaker at initiating K1 is positioned as knowing and the addressee either as knowing or not knowing. Unlike non-initiating K1, on the other hand, initiating K1 may position the addressee as neither knowing nor not knowing. This is the case when the realisation of K1 involves the modal particle ő. This will be exemplified using the second exchange in (10) (repeated as (25) below), which is initiated but not responded to.

(25) T = teacher

T1: K1 őː
The non-positioning of the addressee is supported by the fact that this K1 can be followed by K2f slots at which the speaker may either indicate they know or do not know the information as in (26) and (27) below.

(26) T = teacher

1. T1: K1
 | spkr | adrs | tʰɘr sənlo nəɛtʃ-x uc le pəl-tʃ pw |
 | +K | NP | DIST trike start-NPST.PTCP NEG RES become-PST MP |
 ‘That motorised trike [may] have become unable to start.’

2. T2: K2f
 | spkr | adrs | tiːm pw |
 | +K | like.that MP |
 ‘[Maybe] like that.’

(27) T = teacher

1. T1: K1
 | spkr | adrs | tʰɘr sənlo nəɛtʃ-x uc le pəl-tʃ pw |
 | +K | NP | DIST trike start-NPST.PTCP NEG RES become-PST MP |
 ‘That motorised trike [may] have become unable to start.’

2. T2: K2f
 | spkr | adrs | xɔn mɔt-ən |
 | -K | who know-NPST |
 ‘Who knows. (≈ I don’t know)’

The possible move rank realisations of exchange functions at the predictable obligatory points in a knowledge exchange are summarised in Table 1. The features show the possible ways in which one can position oneself (speaker positioned vs. speaker not positioned) and one’s addressee (addressee positioned vs. addressee not positioned) at different points in a knowledge exchange.
Table 1 Possible move rank realisations of exchange functions in a knowledge exchange

<table>
<thead>
<tr>
<th></th>
<th>[speaker positioned]</th>
<th>[speaker positioned]</th>
<th>[addressee positioned]</th>
<th>[addressee positioned]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dk1</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>K1^</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

(Key: K1^ = non-initiating K1, K1 = initiating K1, +K = +knowledge, -K = -knowledge)

Table 1 shows how the resources for knowledge exchange and the resources for move rank are diversified. A function in a knowledge exchange can be realised by more than one class of move; and a class of move can realise more than one function in a knowledge exchange. For example, K2 can be realised by [speaker positioned: +knowledge & addressee positioned: +knowledge] and [speaker positioned: -knowledge & addressee positioned: +knowledge]. The move class [speaker positioned: +knowledge & addressee positioned: +knowledge] can also realise K1 (both initiating and non-initiating).

Table 1 also demonstrates the kind of restrictions the structure of a knowledge exchange places on selections from the move systems. For instance, the potential of move selections for non-initiating K1 is different from those for initiating K1. While the former cannot be realised by moves selecting [speaker positioned: +knowledge & addressee not positioned], the latter can. The restrictions on move selections also highlight the lack of certain choices in realising the predictable structure of a knowledge exchange. For example, the selections [speaker positioned: -knowledge & addressee positioned: -knowledge], [speaker positioned: -knowledge & addressee not positioned], and [speaker not positioned] are missing from the paradigm. Some of these choices are used to realise the non-predictable elements of an exchange, to which we now turn.

4.5 Move selections for tracking and challenges

As introduced in Section 1.1, Martin (1992: 66–76) discusses two types of dependent elements in an exchange: tracking and challenge. Martin, however, does not make explicit the relationship between the dependent elements in an exchange and the classes of move that realise them (i.e. SPEECH FUNCTION in Martin’s description). A move-by-move analysis of tracking and challenges based on the
move options developed so far provides a better understanding of how these elements (especially challenges) are dynamically related to the predictable exchange structure they diverge from and depend on.

First, tracking. For some tracking sequences, specifically for those where the interlocutors confirm the experiential meanings made in the previous move, interlocutor positioning in terms of their knowledge of the information is not at stake. Martin refers to them as [explore] in his network for tracking (Martin 1992: 70) and Berry (2016) refers to them as ‘textual queries’, since neither the propositional content nor the positioning of interlocutors are at stake. The interlocutors simply put the interaction on hold so that the experiential meanings are clarified. The tr ^ rtr structure for this kind of sequence is thus realised by moves selecting [speaker not positioned & addressee not positioned].

In the exchange in (10), analysed as (28) below, the challenge in (28.3) is followed by a confirmation sequence (a subtype of tracking), which explores the experiential meaning construed in the preceding challenge. The confirmation requests a total replay of information. The original move numbers are maintained.

(28) $T =$ teacher

3. T2: ch ukuc smf/n nitm mot/o
 NEG Secin always motorbike
 ‘No, Secin always (takes her children to school by) motorbike.’

4. T1: tr spkr adrs xr?
 NP NP eh
 ‘Eh?’

5. T2: rtr spkr spkr smf/n nitm mot/o
 NP NP Secin always motorbike
 ‘Secin always (takes her children to school by) motorbike.’

Next, challenge. Challenges are characterised differently according to the points in an exchange they occur at. They may come after Dk1, K2, or K1 – that is, in potential K2, K1, and K2f slots in a knowledge exchange (cf. Berry, 2017: 273, where she did not discuss challenges after Dk1). Most of the challenges we encountered so far are at potential K2f slots. A challenge at this point is typically realised by a move selecting the systemic opposites from the move system in relation to the move that realises K1, the move on which the challenge depends on (i.e. [+knowledge] against [-knowledge] and vice versa). For example, in the challenge and response to challenge in (10) (analysed
as (29)) the positioning from the previous speaker is reversed. In (29.3) the positioning of the speaker in (29.1) is reversed (from [+K] to [-K]). In (29.6), the positioning of both the speaker and the addressee in (29.3) is reversed (from [+K] to [-K] for the speaker and [-K] to [+K] for the addressee). Again, the move numbering in (10) is preserved. The arrows track the changes in the way the two interlocutors are positioned.

(29) T = teacher

1. T1: K1 spkr adsr t'or iixin sn ort'v senla kar jep-tf e-tf f0
 +K +K DIST daughter 3POSS before trike INS commute-PROG COP-PST MP
 ‘[I know; you may know] her daughter was commuting (to school) by motorised trike before.’

2. T2: ch spkr adsr ukue sot'isn ni-tom mat'sa
 +K -K NEG Secin always motorbike
 ‘No, Secin always (takes her children to school by) motorbike.’

3. T1: rch spkr adsr ukue senla kar pes jep-tf e-tf f0
 +K -K NEG trike INS also commute-PROG COP-PST MP
 ‘No, [I know; you don’t know] (she) was also commuting by motorised trike.’

The reversal of interlocutor positioning is also used for challenges at potential K1 slots following K2. Challenges at this point typically reverse one of the speakers’ positioning. In (30), the second move functions to challenge the K2; the selection from the move system is changed with respect to the current speaker’s positioning at the preceding K2 ([+knowledge] → [-knowledge]).

(30) T = teacher

T1: K2 spkr adsr sn u'lsor t'v'r-a mu t'e:r-x u'e mu
 -K +K PROX sentence correct-NPST.PTCP IP correct-NPST.PTCP NEG IP
 ‘Is this sentence correct or not correct?’

T2: ch spkr adsr m6t-x u'e
 -K -K know-NPST.PTCP NEG
 ‘(I) don’t know.’

One other possible realisation of challenge is to deny relevance – to be uncooperative. It is possible for this type to occur at potential K2, K1, and K2f slots – i.e. challenging Dk1, K2, and K1. This type
of challenge is realised by moves selecting [speaker not positioned & addressee not positioned]. The exchanges in (31), (32), and (33) exemplify this type of challenge at potential K2, K1, and K2f slots respectively.

(31) N = niece, U = uncle

```
N: Dk1 spkr adrs pi j htmlspecialchars[encoding(31)]eme ki wحرف (1) look.for-PROG get-PST.PTCP ACC know-NPST.PTCP IP
+K NP 1SG how 2SG ACC look for PROG get PST.TCP ACC know NPST.TCP IP

Do you know how I found you?
```

```
U: ch spkr adrs mst-x ue
NP NP know-NPST.PTCP NEG

‘(I don’t know.’ [The uncle said grumpily.]
```

(32) T = teacher

```
T1: K2 spkr adrs sn u encontrar t e r-x mu t e r-x ue mu
-K +K PROX sentence correct-NPST.PTCP IP correct-NPST.PTCP NEG IP

‘Is this sentence correct or not correct?’
```

```
T2: ch spkr adrs ne:t t e sepe ukue
NP NP 1SG COM relevance NEG

‘(It’s) not relevant to me.’
```

(33) T = teacher; the teachers are discussing why T2 is sick

```
T1: K1 spkr adrs tpi morn seer aae tposar t jep-ser konmeq tpi jw
-K -K 2SG PROX morning night wind DAT commute CONT catch cold PST 2SG TOP

‘Because you continuously commute in the wind in the morning and at night, you caught a cold.’
```

```
T2: ch spkr adrs ksr t an jep-x lo t e sn t e xeme t e me
NP NP home DAT POSS go-NPST.PTCP TEMP that COM relation COM IP

‘Does it have anything to do with (=what does it have to do with) [me] going back home?’
```

The realisations of the dependent elements in a knowledge exchange – tracking and challenge – are summarised in Table 2. Although both tracking and challenge can be realised by [speaker not positioned & addressee not positioned], this realisation has different consequences. While tracking
suspendeds the course of an exchange – as the tr^rtr in (28) above – challenges realised by [speaker not positioned & addressee not positioned] typically terminate the exchange – as in (31) to (33) above. Such a move-by-move analysis of the dependent elements in a knowledge exchange makes explicit what is at stake for challenges occurring at different slots in the exchange.¹⁰

Table 2 Move rank realisations of the dependent elements in knowledge exchanges

<table>
<thead>
<tr>
<th>dependent elements</th>
<th>move realisations</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracking (confirmation)</td>
<td>[speaker not positioned & addressee not positioned]</td>
</tr>
<tr>
<td>challenge</td>
<td>[speaker not positioned & addressee not positioned]</td>
</tr>
<tr>
<td>both interlocutors’ positionings reversed</td>
<td></td>
</tr>
<tr>
<td>one of the interlocutors’ positionings reversed</td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusions

This paper has developed the move systems in relation to dynamism in knowledge exchanges – i.e. the possible options available at different points in the exchange structure. In a knowledge exchange, moves typically select from systems that are related to the ways interlocutors are positioned with respect to their knowledge of the information under negotiation. The interlocutors are either positioned as knowing or not knowing the information, or they are not positioned either way. The overall potential at move rank is shown in Figure 4 – modifying Figure 3 in terms of restrictions for co-selection using the I/T symbols, which mean ‘if…then’. The correlation between the two co-selection restrictions are indicated through numbering (i.e. If 1, Then 1; If 2, Then 2). Figure 4 shows that when the addressee is positioned, the speaker must be positioned (If [addressee positioned] is selected, then [speaker positioned] must be selected). In addition, when the speaker is positioned as not knowing, the addressee must be positioned (If [speaker positioned: -knowledge] is selected, then [addressee positioned] must be selected).
The move systems developed along this line show how selections from the move systems are conditioned by the different structural functions in the exchange structure. Table 3 summarises the features preselected and activated for the different functions in knowledge exchanges.

<table>
<thead>
<tr>
<th>exchange functions</th>
<th>preselection at move rank</th>
<th>activation at move rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dk1</td>
<td>[spkr: +K & adrs: NP]</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>[adrs: +K]</td>
<td>[spkr: +K], [spkr: -K]</td>
</tr>
<tr>
<td>non-initiating K1</td>
<td>[spkr: +K]</td>
<td>[adrs: +K], [adrs: -K]</td>
</tr>
<tr>
<td>initiating K1</td>
<td>[spkr: +K]</td>
<td>[adrs: +K], [adrs: -K], [adrs: NP]</td>
</tr>
</tbody>
</table>

The move systems developed in this paper have also made it possible to reveal the dynamicity of interlocutor positionings in a knowledge exchange, particularly in relation to challenges. We can now explicate what is at stake for challenges in a knowledge exchange.

As far as the relationship between the move systems developed in this paper and Halliday’s SPEECH FUNCTION (e.g. statement and question for the exchange of information) is concerned, the move systems developed here subsume the options in SPEECH FUNCTION. For example, in statements the speaker is typically positioned as knowing the information and the addressee as not knowing the information. In questions the speaker is typically positioned as not knowing the information and the addressee as knowing the information. In comparison, the current move systems have additional explanatory power when other types of positioning are at stake (e.g. when both the speaker and the addressee are positioned as knowing the information).
Further studies need to investigate how degrees of knowledge can be incorporated in the move network. Initial attempts have been made in Zhang (2020a, 2020b) in relation to the system of ENGAGEMENT (Martin and White, 2005) for the purpose of explaining the use of modal particles in Khorchin Mongolian. Another line of enquiry is to develop comparable move systems available in exchanges that are concerned with the negotiation of action – action exchanges (Berry, 1981c) – in terms of the interlocutors’ responsibility for carrying out the action (see Zhang 2020a: 118-131). In addition, it could be tested whether the move systems developed based on Khorchin Mongolian data are applicable to exchanges in other languages. Further attention could be given to the way different languages realise particular kinds of positioning.

Acknowledgements

I thank the anonymous reviewers for making the arguments in the paper clearer. I am grateful to the informants of this study for allowing me to record their conversations. They are teachers from the Mongolian sector at Hugjiltu Primary School and Nara’s family in Jalaid Banner, Hinggan League, Inner Mongolia. I thank Prof J.R. Martin for his valuable suggestions during the formation of the ideas presented in this paper and Dr Jinfeng Ding for providing me with financial support during the drafting of this paper.

Funding Acknowledgements

The study is partly supported by the University of Sydney International Scholarship (2016-2019). The field trip for this study is supported by the Faculty of Arts and Social Sciences Doctoral Research Travel Grant Scheme (2017), The University of Sydney.

Declaration of Conflicting Interest

The Author declares that there is no conflict of interest.

Notes

1. The structure of knowledge exchange introduced so far from the perspective of primary knower and secondary knower positioning is one of the three layers of analyses proposed in Berry (1981a, 1981b). It is called the interpersonal structure of an exchange. This is complemented by an experiential perspective, which is concerned with the completion of propositions, and a textual perspective, which is concerned with turn-taking. Interpersonal, experiential, and textual

2. The challenges in example (7) would be categorised as ‘experiential challenges’ in Berry’s (2017) terms. This paper adopts the view that tracking moves are experientially oriented and challenges are interpersonally oriented (Martin 1992: 66-76). For a discussion of Berry’s different types of challenge (i.e. textual, interpersonal, and experiential) in relation to the framework developed in this paper, see Zhang (2020a: 112-117).

3. Sinclair and Coulthard (1975) proposed a rank scale for the analysis of teacher/pupil interactions, which comprises lesson, transaction, exchange, move, and act. Exchange rank is developed by Berry (1981a, 1981b, 1981c) in terms of exchange structure; and exchange structure is further developed by Martin and his colleagues at the strata of discourse semantics as the system of NEGOTIATION (e.g. Martin, 1992; Martin and Rose, 2007; Ventola, 1987).

4. Following the conventions in SFL, options in systems are enclosed in square brackets in running texts.

7. The second move in (17) would be treated as realising a challenge by Martin’s (1992) criteria. Such an analysis would be problematic given that the ‘challenge’ does not prevent the instantiation of K1. The same lexicogrammatical realisation, however, may realise a move that is a challenge – e.g. when it is said uncooperatively to abort the exchange.

8. In a ‘polysystemic’ model of options available at different points in an exchange (e.g. Berry 1981a), when the selection of a move option at a prior functional slot constrains the selection of the option in the current slot, the relationship is also considered one of preselection. This sense of the term ‘preselection’ is not used in this paper since the approach taken here is essentially ‘monosystemic’ (O’Donnell, 1999).

9. Zhang (2020a: 113-114) considers all tracking moves as non-positioning. But in tracking sequences such as the one in example (6) the client’s knowledge of the time of the flight is at stake.

10. A broad correspondence with Berry’s (2017) classification of challenges would be: the challenges that are realised by [speaker not positioned & addressee not positioned] are textual challenges, those involve the reversal of both the interlocutors’ positionings are experiential
challenges, and those involve the reversal of one of the interlocutors’ positioning interpersonal challenges.

References

Rose D and Martin JR (2012) Learning to Write, Reading to Learn: Genre, Knowledge and Pedagogy

